Metal casting is the process in which molten metal is poured into a mold and allowed to solidify into an object. The object that solidifies is called a casting. Sand casting is defined as pouring of molten metal into a sand mold and allowing it to solidify in the mold. Sand casting is the most widely used metal casting process in manufacturing and almost all casting metals can be sand cast. A few examples of modern items manufactured by the sand casting processes are gears, dies used in the general components, cylinder heads, pump housings, and valves components. The Sand casting parts ranging from a few ounces to upwards of 1000 kgs, so it can be a manufacturing solution no matter what size project you are working on.
Sand casting is commonly used for producing large, complex parts in materials such as iron, steel, aluminum, and bronze. It's relatively inexpensive and can accommodate a wide range of part sizes and shapes, making it a popular choice in the manufacturing industry.
Investment casting, also known as lost-wax casting, is a manufacturing process used to create complex geometry of metal parts with high precision and intricate details. Here's how it works:
Simulates the casting process in advance, eliminating multiple trials and achieving high quality at the first time.
Read MoreA pattern of the desired part is created using wood or metal. This pattern is a replica of the final part and is used to create the mold.
Read MoreThe pattern is placed in a box or flask and surrounded by molding sand. The sand is typically a mixture of silica sand, clay, and water. The sand is packed tightly around the pattern to create the mold cavity.
Read MoreOnce the sand has set, the pattern is removed from the mold, leaving behind a cavity in the shape of the desired part.
Read MoreIf the part requires internal features or hollow sections, cores made of sand or metal may be inserted into the mold cavity.
Read MoreIf the part is complex and requires multiple pieces, the mold is assembled by placing the cope (top half) and drag (bottom half) together. Channels called sprues, runners, and gates are also formed in the sand to allow the molten metal to flow into the mold cavity.
Read MoreMolten metal is poured into the mold cavity through the sprue. The metal fills the cavity and takes the shape of the part.
Read MoreOnce the metal has solidified, the sand mold is broken apart to reveal the metal casting inside.
Read MoreThe casting may undergo various finishing processes such as grinding, sandblasting, machining, or heat treatment to achieve the final desired shape, surface finish, and mechanical properties.
Read MoreThe advantages of investment casting are impressive. Create almost any configuration of your precision metal component with High Dimensional Accurcy and Superior surface finishing at very compitative cost. A Design parts as small, large, or complex as you need. In short, eliminate many of the barriers holding you back today.
Consider the following investment casting benefits, which can also help you:
Signicast makes tools from alloys of iron containing 0.25-2.5% carbon with substantial amounts of chromium, molybdenum, tungsten, vanadium, cobalt, and to a lesser extent nickel to achieve the desired combination of hardenability, hardness, toughness, and wear resistance.
The 400-series group of stainless steels contain 11-27% chromium, up to about 1% carbon, and 2.5% nickel maximum. The grades of stainless steel castings Signicast most often produces respond to heat treatment and can be supplied with a predominantly martensitic microstructure in a wide range of strength and hardness.
Aluminum alloys possess a unique combination of mechanical properties and corrosion resistance. These alloys are roughly one-third as dense as steel with higher strength to weight ratios.
Carbon and low alloy steels are the workhorses of the mechanical world. No other class of materials offers as wide a range of mechanical properties as economically.
Cobalt based alloys are very corrosion and heat resistant due, in large part, to the unique properties of cobalt. The alloys produced at Signicast are generally for heat resistance and/or wear resistance and therefore contain large amounts of carbon, chromium, and carbide formers like tungsten.
Consisting primarily of nickel, chromium, and molybdenum, smaller additions of other alloying elements are used to create alloys with very high corrosion resistance while other elements would be used to create alloys with very high hot strength.
Thermal expansion alloys, such as Invar and Kovar, are made up of an iron-nickel base and are known for their low coefficient of thermal expansion (CTE). Iron and nickel have very similar CTE, however with these alloys, thermal expansion is affected by the addition of nickel to iron.
The 300-series group of stainless steels contain 16-30% chromium and from 6-35% nickel. Depending on the composition, the microstructure is predominantly or wholly austenitic and thus unresponsive to heat treatment.
By definition, a prototype is the first, preliminary model that allows design engineers the ability to quickly and efficiently explore their designs, test their performance, and craft even better components. After all, production components will be modeled and copied from this initial part.
When the prototype is the building block essential to the success of a project, don’t be forced to choose a prototyping supplier based on time and cost. So much can be learned from a prototype’s function, the need for a quality prototype is critical. When designing metal components, an exact replica of your final part is the best prototype you can get.
Crunch time may mean different things for different projects, but one thing’s for sure, nobody wants unforeseen surprises.
Stopping to prototype your design, evaluate its feasibility, and ensure its productivity might be critical to your product’s ultimate success. But at this stage of a product’s lifecycle, timing is essential. A delay of weeks can result in lower sales and lost market share.
Our in-house rapid prototyping can significantly accelerate your time-to-market. We simulate production using the specific process and our proprietary wax to deliver the most accurate results at a fraction of the time it takes other investment casting companies.
When it comes to developing your ideas, we’ve got the most effective prototyping options for your component—not to mention the in-house prototyping experts to help you choose the right one for the job. Our prototyping capabilities include:
Signicast does not have a minimum order quantity for prototypes. So whether you need one or one hundred, our team can provide a consistent supply of production-like components.
Best of all, we can create prototypes in as little as five days. Our average tooling lead time is three to five days. Lead times can vary based on complexity of the part and overall project needs.
We know that finding a supplier who can constantly and consistently supply prototypes can make or break your business. Investment cast prototyping is efficient in the overall cost and time of the project. The best thing is, you do not have to compromise quality for time or cost. Our in-house team of knowledgeable engineers are constantly thinking outside of the box to ensure our customer’s designs become a successful reality. Let us help you succeed.